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Introduction
One of the challenges in designing a large laser sys-

tem like the proposed National Ignition Facility (NIF)
is determining which configuration of components
meets the mission needs at the lowest construction cost
with the largest margin in performance without any
optical damage.  Such an endeavor could credibly
require evaluation of a million different designs
because we must consider a range of values for each of
many parameters: different numbers of beamlets, dif-
ferent aperture sizes, different numbers of laser slabs,
different thicknesses of slabs, etc. The evaluation of so
many designs with even a minimum of detail is
impractical with current computing ability. There is
hence a premium on the development of techniques to
determine the best design without evaluating all of the
practical configurations. 

What Is an Optimization?
Optimization is the process of finding the best set of

values for a system’s identified design parameters.
There are three steps to optimization. First, we identify
exactly what aspects or measures of the system would
define a better system if they were enhanced, such as
improved output, lowered cost, improved reliability, or
a combination of measures with appropriate w e i g h t i n g
factors. This is often the most difficult step, because it
re q u i res that we truly understand what constitutes a bet-
ter system. Second, we define a mathematical function
known as a figure of merit (FOM) that incorporates
these measures and has both of the following charac-
teristics: (1) the value of the FOM increases or
decreases according to our selected measure of good-
ness, and (2) the FOM is dependent on all of the design
parameters under study, such that the value of the

FOM varies if the value of any parameter is varied.
Third, we search the parameter space to find the
design that maximizes or minimizes the FOM, depend-
ing on how the FOM is defined.

To optimize a large laser system, we must consider
more than just an FOM. Much of the physics of light
propagation is nonlinear, in the sense that a change in
each of the many parameters does not produce a pro-
portional change in the laser output. This means that
we cannot use any of the linear optimization methods
that are known. There are also many equality and
inequality constraints to consider, such as not exceed-
ing a certain construction cost, not exceeding a certain
input energy, not damaging any of the optical ele-
ments, and outputting at least a certain 3ω laser
energy. Optimization of a laser system is thus not only
nonlinear, but also constrained, and is hence called
nonlinear constrained optimization. In addition,
because a graph of the FOM plotted as a function of all
of the variable parameters is often a multiple-peaked
surface, with several peaks of different heights, there
are local maxima (peaks) in the FOM that can easily
fool a computer into incorrectly “thinking” it has
found the optimum. What we need, therefore, is a
method that can quickly and correctly find the highest
peak in the FOM space, the so-called global optimum.
Moreover, the FOM space is sometimes noisy in one or
more of the parameters, with additional peaks and val-
leys superimposed on top of the otherwise smooth
topology. We thus need a technique that can smooth
out the noise. A mathematical statement of such a non-
linear constrained optimization problem is to maxi-
mize (or minimize) a suitably smoothed (or averaged)
FOM function f(x) subject to equality constraints ci(x) =
0, i = 1, ..., k, and inequality constraints ci(x) ≥ 0, i = k+1,
..., m, where parameter vector x = (x1, x2, ..., xn) repre-
sents n variables.
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Selecting an Optimization
Technique

Many diff e rent techniques exist for nonlinear con-
strained optimization. These techniques differ in the
way in which the computer navigates the FOM space
in search of the tallest peak or deepest valley. The
most common methods sample the topology in some
region to determine the slope of the terrain in various
d i rections, and hence the direction that leads to the
optimum. These methods, which are all iterative, dif-
fer in the following ways in which the local terrain is
s a m p l e d :
1. The downhill simplex method1 uses only function

evaluations (i.e., evaluations of the FOM), not
derivatives, to move in the direction of the optimum
using manipulations of the geometrical figure (sim-
plex) formed by the original point and n somewhat
arbitrary displacements in the n directions corre-
sponding to the n parameters considered. This
method is robust, but typically slow to converge.

2. Simple derivative (gradient) methods sample the
space for two (or more) values of each parameter to
determine a local slope in the FOM, and then step
off a fixed step in the direction of maximum slope.
One serious problem with this method is that, once
the best direction in which to go for the next calcula-
tion is identified, we don’t really know how far to
go in that direction. Consequently, this method can
be slow to converge.

3 . Quadratic methods, in essence, calculate the FOM for
t h ree values of each parameter, fit the resulting FOM
values to a quadratic function such as a parabola, and
calculate exactly how far to go for the next estimate
of where the FOM peak might lie. This method is
much “smarter” than the above methods because it
knows how far to step out for the next iteration. Tw o
common methods of this type are Brent’s method
and Powell’s method. Brent’s method uses parabolic
interpolation. Powell’s method finds the solution that
z e ros the gradient of a Lagrange function formed as a
sum of the FOM function and a linear combination of
the constraint functions. It approximates the full non-
linear problem by a quadratic problem to find the
d i rection to go in the FOM space, then determines
how far to go in that direction by doing a one-dimen-
sional optimization in that direction. While Bre n t ’ s
method uses only three function evaluations for each
p a r a m e t e r, Powell’s method uses one function evalu-
ation, one derivative evaluation, one estimate for the
second derivative, plus other function evaluations for
each subsequent line search. These methods are pow-
erful and fast, and are the methods used in the codes
that we employ.

4. Simulated annealing methods2 randomly sample
points over a large portion of the parameter space
and then slowly decrease the size of the sampling
space around any optimum so found, according to
mathematics analogous to Boltzmann thermody-
namic cooling. This method is good for selecting the
best global ordering of a large combination of dis-
crete elements of some kind when many local
optima exist, but it converges too slowly and is thus
not practical for our problem.

5. Genetic methods3 form a pool of design candidates,
“mate” the ones having the highest FOMs (the par-
ents) by combining attributes in some way to pro d u c e
other candidates (the offspring), and then remove the
unlikely candidates (extinction). This method can also
be effective in finding a global optimum among many
local optima, but it also converges too slowly.
The first three methods listed above can be confused

if the FOM (or constraint) surface is noisy, unless addi-
tional smoothing algorithms are included. Simulated
annealing and genetic methods are inherently more
able to navigate successfully along noisy surfaces, but
are expected to converge too slowly to be effective for
the optimization of a large laser system. We therefore
chose to use quadratic optimization methods to speed
up the computational time. As a result, however, we
had to deal with discontinuities in the FOM as one
form of noise.

Dealing with Discontinuities in
the FOM

There are several sources of fluctuations in the FOM
that affect an optimizer evaluating various designs of a
large laser system. Although stochastic (statistical)
noise can sometimes be a problem when methods
employ random numbers, a more typical problem
arises from the discontinuous FOM jumps that corre-
spond to integer steps. Integers are encountered in
such parameters as the numbers of laser slabs in the
amplifiers, the number of flashlamps for each slab, and
the number of beamlets in the laser. If the FOM (or a
constraint) moves abruptly as the optimizer searches
from one integer to the next, as it usually does, the
optimizer can be confused by the local optima thereby
introduced. This is especially true for gradient-search
techniques, which are based on real numbers. We can
overcome such fluctuations by incorporating either
some type of smoothing technique or by substituting
real numbers for the integer quantities so that the
optimizer can consider noninteger (i.e., nonphysical)
values of the parameters.

A second source of discontinuities arises in opti-
mizations involving spatial-filter pinholes because
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of the integer-like effect of the transverse spatial 
re p resentation of the beam by a fixed number of grid
points (e.g., 512 points over a horizontal width of
50 cm). To explain these discontinuities, we must first
explain the purpose and function of pinholes. 

All of the large laser chains at LLNL involve the use
of spatial filters that focus the beam and force it to go
through a 100- to 200-µm-diam pinhole in a metal plate.
The purpose of such a pinhole is to cut off the high-
angle noise present in the beam, thereby smoothing the
transverse spatial intensity profile. Such smoothing
occurs because, in the focal plane of a lens, the spatial
intensity profile corresponds to the power in the vari-
ous angular components in the beam. Thus, if the
intensity profile is decomposed into its Fourier compo-
nents, the relative powers in the low-frequency compo-
nents correspond to the intensities seen near the
centerline of the focal plane. Higher-frequency compo-
nents focus at increasingly farther distances from the
centerline because they are propagating at larger
angles. These various frequency components grow in
magnitude at different rates due to, among other
things, the nonlinear indices of refraction of the optical
materials in the laser, as described by the Bespalov–
Talanov theory.4 The high-frequency components tend
to grow f a s t e r, so it becomes desirable to clip off the
power in these frequencies periodically in the laser
chain to keep the beam as spatially flat as possible.
For a beam with a reasonably smooth spatial pro f i l e ,
the power in the high-frequency components is low
enough to permit a pinhole to do this clipping without
ablating away too much of the pinhole structure and
thereby disrupting the last temporal portions of the
laser pulse.

In propagation simulations employing a finite
number of grid points, the power in the Fourier compo-
nents is summed into the same number of bins as there
are grid points. Consequently, as the diameter of the
pinhole changes with changing pinhole acceptance
angle, there are discrete jumps in clipped-beam power
as the edge of the pinhole moves from one frequency
bin (grid point) to the next. These jumps result in
abrupt changes in the spatial intensity profile of the
beam after it leaves the filter. If the optimizer is moni-
toring, for example, the peak fluence as a constraint
against optical damage, it can be confused by the local
optima that such discontinuities generate. The solution
we have used to overcome this confusion is to average
the FOM over several adjacent function evaluations.

Optimizing the NIF Design
Optimization of the NIF design is one example of

how we can use our optimization techniques. As
described in more detail in the article “NIF Design
Optimization” on p. 181 of this Quarterly, the concep-
tual design5 for the NIF configuration arose through

use of a code called CHAINOP,6 which was capable of
using either a simplex optimization routine or a gradi-
ent-search routine. We accessed this gradient-search
routine as part of a large systems analysis program-
ming shell called SUPERCODE.7 SUPERCODE uses the
quadratic version of Powell’s method, as written in an
Argonne National Laboratory implementation of a
variable metric method labeled VMCON.8 Because
VMCON evaluates gradients, care was taken to mini-
mize discontinuities in the FOM and constraints by
using noninteger laser slab and flashlamp counts, as
well as smoothed cost functions.

In the second optimization effort, for the Advanced
Conceptual Design (ACD) phase of the NIF, we imple-
mented three separate approaches. In one approach,
we used SUPERCODE to evaluate ~100,000 specific
designs distributed around the conceptual design
point in the major parameters, and we applied various
cuts to constrain dynamical and engineering quantities
such as cost and nonlinear growth of spatial noise. For
a second approach, we used SUPERCODE to do an opti-
mization. As with CHAINOP, we used fractional slabs
and noninteger flashlamp counts, but optimization
over pinhole acceptance angle could not be performed.
A third approach, coded as OPTIMA1, is based on a
modified version of Brent’s method (parabolic interpo-
lation). A similar approach had been used in the diode-
pumped solid-state laser (DPSSL) design studies for
inertial fusion energy.9 OPTIMA1 can use either of two
different methods to smooth the FOM space and can
treat integer parameters directly. This code therefore
allowed the consideration of noisy parameters, includ-
ing integer slab and flashlamp counts, and pinhole
acceptance angles. 

There were several reasons we chose multiple
approaches in optimizing the NIF laser for the ACD.
First, when we started, we knew that there were com-
plexities such as noisy parameters, and we were not
sure that any one approach would prove successful in
the end. Second, the performance of optimizers is usu-
ally dependent on the problem considered, so the
length of time needed for any one optimizer to con-
verge to a solution was unknown for the NIF problem.
In general, performance is better if the optimization
algorithm is tailored to the problem in some way. On
the other hand, the use of a well tested fast algorithm
like VMCON can often prove very effective. Third, we
wanted multiple opinions from independent
approaches to improve the reliability of the results.

All three approaches used parallel processing
through Parallel Virtual Machine (PVM) software. This
software allows one master computer to send tasks to
many different slave computers and retrieve the
results. In our case, we had one HP 715/80 UNIX mas-
ter workstation tasking 28 similar slave workstations
that each evaluated the performance of one NIF design
(SUPERCODE) or performed the suboptimization for one
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parameter (OPTIMA1). The total computing power
was 20–30 megaflops for each of 28 computers, or
about 0.75 gigaflops. The use of this workstation clus-
ter enabled the codes to search through a space repre-
senting a million candidate designs at a rate over 20
times faster than it would have taken with only one
computer. This facility proved valuable because it
reduced the total calculation time from the 46 days it
would have taken for 106 assessments at about two
minutes per assessment of each candidate design on
one computer to about one or two days using the
workstation cluster.

Features of SUPERCODE

SUPERCODE7 couples a toolbox of systems analysis
tools to a powerful user interface. The systems analysis
tools currently consist of the following: 
• A constrained nonlinear optimization package

based on VMCON.8

• A nonlinear optimization package based on a
genetic algorithm.3

• A nonlinear equation solver.
• A Monte Carlo sampling package for performing

uncertainty analyses. 
• Parameter scans. 
• Uncertainty analyses.
• Facilities for exploiting PVM software to speed up

optimizations. 
These tools are controlled by a programmable shell

that understands a large subset of the C++ computer
language, including arithmetic expressions, loops,
decision structures, functions, classes, and objects.
Users can interactively manipulate the set of equations
to be passed to the systems analysis tools, monitor
progress of a calculation, postprocess results, and plot
them using an interactive graphics package.
SUPERCODE was the main code used in setting the NIF
baseline design, and has been used to design tokamak
reactors and experiments, hybrid electric vehicles, rail
guns, and neutron sources. SUPERCODE is available on
UNIX, MacOS, and Windows platforms.

The OPTIMA1 Code
OPTIMA1 is based on the particular parabolic-inter-

polation method that proved successful for the DPSSL
inertial fusion energy study.9 This method increases
the independence of the parameters, often permitting
the full optimization to be accomplished by indepen-
dent one-parameter optimizations. The key to this
method is to incorporate an inner loop that maximizes
the laser’s injection energy subject to all constraints.
An outer loop then deals with all of the other parame-
ters designated as active optimization variables. Both
loops advance by making one function evaluation and
using that together with the last two calculations near-

est the current best value to determine a next guess.
Penalty functions reduce the value of the FOM by
exponentially degrading the FOM as any active vari-
able violates a constraint. The current list of features
includes the following: 
• Easy addition of parameters. 
• Treatment of both discrete (integer, even-integer, or

odd-integer) and analog (real) parameters. 
• Two types of smoothing for noisy parameters

(random-number smoothing and perturbation
smoothing). 

• Ability to restart runs from a dump file. 
• Operation on either a single or multiple (parallel-

processing) platforms (using PVM software). 
• Table-like scans over a single parameter. 
• Input-file selection of the optimization FOM from

among any product or quotient of the parameters or
calculated quantities.

• Performance of a sensitivity study around the final
parameter vector. 
OPTIMA1 is very flexible and robust. It usually

takes more time to converge to a solution for small
(<10–3) precisions, however, because the penalty func-
tions create a “cliff” in the FOM space that requires
special treatment in the parabolic interpolator. In addi-
tion to helping choose the NIF design parameters,
OPTIMA1 has been useful in performing sensitivity
studies on the parameters (e.g., the maximum allow-
able doubler detuning angle) and in determining
optical specifications through studies varying the aber-
rations placed on the optical components. OPTIMA1 is
written in UNIX HP FORTRAN.

Overcoming Specific Modeling
Difficulties

After selecting a set of optimization techniques, we
had to deal with many problems that were specific to
the optimization of a large laser. First, we found many
designs having the same value of energy delivered to
the laser entrance hole (LEH) of the target, but with
differing construction costs, so we had to include cost
in the FOM or cost as a constraint. Two solutions that
proved effective were (1) minimizing cost subject to
performance constraints and (2) maximizing the ratio
of energy delivered to the LEH and total cost, subject
to the other constraints.

The second problem was finding a way to include
realistic aberration sources for every optic that would
account for surface roughness and bulk phase re t a rd a-
tions. The challenge was to develop techniques to use
m e a s u rements taken over varying aperture sizes and on
a limited number of parts while preserving the spatial
distributions of wavefront roughness in such a form that
realistic aberration sources could be simulated for every
optic. This was done by devising a technique using a
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power spectral density (PSD) function defined as the
square of the discrete Fourier transform of the mea-
sured phase retardations, multiplied by the length of
the 1–D measurement (or multiplied by the length and
width in 2D).10 We combined the measurements from
three spatial-frequency ranges 
(0 to 0.1 mm–1, 0.1 to 1 mm–1, and 1 to 10 mm–1) while
mitigating the effects of finite sampling apertures by
using a windowing filter function (a Hanning filter).
This filter broadened (or blurred ) the resulting width
of the spatial frequency structures and eliminated fre-
quencies generated by the discontinuities at the edges
of the samples. The PSDs thereby obtained did not
possess any relative phase information in the Fourier
domain, but were merely the spectral distributions of
the wavefront errors. We then used the PSD for a given
type of optic to determine the magnitude of the
Fourier coefficient and added a random phase in the
Fourier domain. Using inverse Fourier transformation,
we obtained a unique wavefront distortion for every
optic needing a simulated phase-front aberration.

The third modeling difficulty was that laser gain
and pump-induced distortions depend on the choice of
pumping parameters (pump pulse duration, Nd
doping concentration, flashlamp explosion fraction,
flashlamp diameter, and flashlamp packing frac-
tion). Pump-induced distortion is phase noise added
to the beam because the nonuniform distribution of
flashlamp light absorbed by the laser slabs causes
nonuniform heating, which distorts the slabs. Because
determining the proper pump-induced distortions is
calculationally intensive (involving ray tracing and 3-D
thermomechanical modeling), we ran the 3-D codes for
a range of each of the pumping parameters and incor-
porated the results in the optimizations using a table
look-up procedure.

The fourth problem was that the use of spatial-filter
pinholes with abrupt edges in calculations with a finite
number of transverse spatial grid points causes ringing
(aliasing), which introduces artificial modulation of the
downstream beam intensity profile. We therefore used
high-resolution runs with many points to define prob-
lem areas and incorporated smoothing algorithms
developed at LLNL.

The fifth problem was damage to the optical 
components that can arise from either high fluence or
filamentation, which both depend on the noise on the
beam. (Filamentation is the process by which the inten-
sity of a narrow beamlet increases as the beamlet is
focused by nonlinear propagation through solid mate-
rials.) A proper treatment of these effects therefore
requires very high spatial resolution to define the
peaks in the transverse intensity profiles. Such resolu-
tion would make the iteration cycle time prohibitively
slow if many points had to be used in two transverse

dimensions. Consequently, we performed most of our
calculations using 1-D codes with 512 spatial points,
which is insufficient to determine filamentation, and
evaluated the likelihood of filament formation and the
resultant optical damage using a phenomenological
model11 developed at LLNL based on measured
Beamlet data. For ordinary (nonfilamentation) optical
damage assessment, we used measured peak fluence
limits as constraints for every component.

The sixth modeling difficulty was that the desired
NIF laser pulse at the LEH is a 3ω pulse consisting of a
long low-power foot followed by a main pulse roughly
3.5 ns wide. Because the laser input is at 1ω, and
because the harmonic conversion from 1ω to 3ω is
intensity-dependent, we had to incorporate precise
algorithms for this conversion process (see the article
entitled “Frequency Conversion Modeling” on p. 199
of this Quarterly); we also had to iterate to make sure
that the 1ω pulse shape produced the desired output
3ω pulse shape.

Optimization Flow
Each optimization iteration included a number of

steps involving other codes, as outlined in Fig.1 for the
particular case of OPTIMA1 using the Ethernet connec-
tions to the cluster of 28 workstations. As directed by 
the master, a slave machine would suboptimize one
parameter by first running two codes to help establish
the temporal shape of the input beam: a plane-wave fre-
quency conversion code (thgft02) to assess the converter
performance with the given parameter values and an
inverse harmonic-conversion code (invconv3) to calculate
the 1ω input temporal shape that would give the desire d
3ω output temporal shape with that converter. Following
the formation of the apodized transverse spatial shape of
the input beam, the optimizer would generate the input
file for PROP92 and run PROP92 to propagate the input
signal down the chain of optical components from the
input of the laser to the harmonic converter. This step
included phase aberration sources to simulate the
experimental surface finishes and bulk properties for
each optic, as well as the amplifier gain files generated
from 2.5-D amplifier modeling and the pump-induced
distortion files generated from 3-D thermomechanical
modeling (see the companion article entitled “The
PROP92 Fourier Beam Propagation Code” for a 
complete description of the physics in PROP92). After
running a code to analyze the PROP92 output file, the
optimizer would run a frequency conversion code
(thgxtz001) to convert the 1ω light to 3ω light.
Thereafter, the optimizer would formulate an input file
for PROP92, this time for the 3ω light, and run PROP92
to propagate the beam down the rest of the laser chain
to obtain the laser pulse entering the target LEH. After
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FIGURE 1.  NIF optimization flow chart for OPTIMA1.     (40-00-1296-2752pb01)

running a code to analyze the PROP92 3ω output file, the
optimizer would run a routine to generate an input file
for the cost code, run the cost code to calculate the re s u l t-
ing cost of the NIF facility, and run a routine to apply the
constraints.The optimizer would then calculate the FOM
as the LEH energ y, or the ratio of that energy to the cost,
or simply as the cost constrained to obtain the desire d

e n e rgy and power at the LEH—all as penalized by the
constraints that failed. After several suboptimizations,
the slave reports the results for that parameter back to the
m a s t e r, which decides how to form the full parameter
vector for the next set of suboptimizations. When the
changes in all parameters are less than specified pre c i-
sions, the process stops.



Summary

Nonlinear constrained optimization of the design of
a large laser such as the NIF is the process of finding
the set of values for the laser’s identified design
parameters that optimizes the figure of merit (FOM).
Among the different optimization techniques avail-
able, we selected quadratic methods based on Brent’s
method and Powell’s method, as modified to treat the
discontinuities imposed by integer parameter values.
An established code (SUPERCODE) and a new code
(OPTIMA1) were configured with realistic aberration
sources for every optic, a cost model of the whole laser
system, methods to incorporate the effects of different
values of the pumping parameters, models for optical
damage as well as filamentation, and full harmonic
conversion of the desired 3ω pulse shape. We also
incorporated parallel processing through use of
Parallel Virtual Machine (PVM) software operating on
a group of 28 workstations. The resulting techniques
allow optimization of the NIF laser and other laser sys-
tems based on realistic components and realistic laser
light propagation.
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